Operating Systems
BCA -1V th Sem

Deadlocks

Text @ OS notes book

* Much of the material appears in Section 3.2 in Feitelson’s OS
notes book

— Literature section in course homepage

* In case this presentation and book conflicts

— As always, this presentation wins

Intro

In the previous lecture

— We've talked about how to synchronize access to shared resources
When synchronizing, if we’re not careful

— Our system might enter a deadlock state

The popular formal CS definition of a dealock

— “A set of processes is deadlocked if each process in the set is waiting
for an event that only a process in the set can cause”

Typically associated with synch-ing the use of resources
— Let’s revise the definition accordingly

— A set of processes is deadlocked if each process in the set is waiting for
a resource held by another process in the set

“The dining philosophers problem”

— The canonical example in introductory OS lectures to demonstrate
deadlocks

Dining philosophers — rules

Five philosophers are sitting
around a large round table,

each with a bowl of Chinese food
in front of him

Between periods of meditation,
they may start eating whenever
they want to, with their bowls
being filled frequently

But there are only five chopsticks
available, one between every pair
of bowls -- and for eating Chinese
food, one needs two chopsticks...

When a philosopher wants to
start eating, he must pick up the
chopstick to the left of his bowl
and the chopstick to the right of
his bowl

Dining philosophers — naive solution

 Semaphore for each fork

— semaphore_t fork[5]

— (What it forks were place in the middle of the table and any
philosopher would be able to grab any fork? Would we still need 5
semaphores?)

* Naive (faulty) algorithm

— philosopher(i):

while(1) do...
 thinking for a while
e wait(fork[i])
« wait(fork[(i+1) % 5])
e eat
 signal(fork[(i+1) % 5])
 signal(fork[i])

Dining philosophers — problem

All the philosophers become
hungry at the exact same time

They simultaneously pick up the
chopstick to their left

They then all try to pick up the
chopstick to their right

Only to find that those chopsticks
have already been picked up (by
the philosopher on their right)

The philosophers then continue
to sit there indefinitely, each
holding onto one fork, glaring at
his neighbor angrily

They are deadlocked

Resource allocation graph

 When considering resource
management
— Convenient to represent system
state with a directed graph

e 2types of nodes

— Process = round node

— Resource type = square node

* Within resource, each
instance = a dot

* 2 types of edges

— Request = edge from process to
resource type

— Allocation = edge from resource
instance to a process

P1 P2 P3
R1 R3
R2
P1 | Holds instance of R2.

Waits for R1.

P2

Holds instances of R1 & R2.
Waits for R3.

P3

Holds instance of R3.

Resource allocation graph

 Examples of resources of which there’s a
— Single instance?
— Multiple instances?

 Assume we have n printers attached to a computer
— Do we need n instances of the same generic printer type?

— Or n separate printer types?
— Or something in between?

Resource allocation graph

* Dining philosophers 1

_
{ P2
. é
P4 P3

o

Resource allocation graph

 When there’s only one
instance per resource type
— Can simplify graph

— By eliminating resources and
only marking dependencies
between processes P1 P2

R1 R2

P3

R3

10

Resource allocation graph

 When there’s only one
instance per resource type
— Can simplify graph

P1

— By eliminating resources and
only marking dependencies
between processes

P5

A

P3

11

Resource allocation graph

 When there’s only one
instance per resource type
— Can simplify graph

P1

— By eliminating resources and
only marking dependencies

between processes P5

P2

12

Recall the formal definition of deadlock

* Definition
— A set of processes is deadlocked if each process in the set is waiting for
a resource held by another process in the set

 Why “in the set”?

P1
— No deadlock, even though every P> t P3

process in the set is waiting for a ‘ :”

resource held by another process:

— Indeed, if including P3, then since
P3 isn’t waiting for a resource held
by another process => no deadlock:

6>

13

Recall the formal definition of deadlock

* Definition
— A set of processes is deadlocked if each process in the set is waiting for
a resource held by another process in the set

e (Can the set be a subset?

— Of course

a‘ :5 P4 PS5

14

Necessary conditions for deadlock

* All of these must hold in order for a deadlock to occur
1. Mutual exclusion

« Some resource is (i) used by more than one process, but is
(ii) exclusively allocated to one process at a time, not shared

 If used by only one process, or can be shared => can’t deadlock
2. Hold & wait

Processes may hold one resource and wait for another

 If resources allocated atomically altogether => can’t deadlock
3. Circular wait

* P(i) waits for resource held by P((i+1) % n)

 Otherwise, recursively, there exists one process that need not wait
4. No resource preemption

 Ifresources held can be released (e.g., after some period of time),
then can break circular wait

DEALING WITH DEADLOCKS

Who's responsible?

 Who is responsible for dealing with deadlocks?
— Typically you (the programmer)
— The OS doesn’t do it for you
— You need to know how to do it and implement it yourself

Can divide ways into 2

1. Design the system such that it is never allowed to enter into
a deadlock situation
— Usable

2. Allow the system to experience deadlock, but put in
mechanisms to detect & recover

— Less usable in practice

Violate 1 of the 4 conditions

e We’'ve enumerated 4 conditions that must hold for deadlock
to occur

— So violating any one of them with eliminate the possibility of
deadlocking

Violate “hold and wait”

* Instead of acquiring resources one by one
— Each process requests all resources it’ll need at the outset
— System can then either provide all resources immediately
— Or block process until all requested resources are available

e Con

— Processes will hold on to their resources for more time than they
actually need them

— Limits concurrency and hence performance

* Refinement
— Before a process issues a new (atomic) request for resources
— It must release all resources it currently holds
* (And of course, before that, bring system to consistent state)
— Risking the resources will be allocated to other processes

Violate “no resource preemption”

e Under some circumstances, for some resources
— Can choose a victim process and release all its resources

— For example, if there isn’t enough memory, can write the victim’s state
to disk and release all its memory

Violate “mutual exclusion”

It is possible to implement many canonical data structures
(such as a linked list)

— Without using any form of explicit synchronization

* No spinlocks, no semaphores, etc.
— But while still allowing multiple threads to concurrently use of the
data structure

How?

— Using HW-supported atomic operations only (such as test-and-set)

— Such algorithms are (also) called “lock free”

* Not to be confused with the “lock free” algorithm definition from
a previous lecture (= “some thread always makes progress”)

Mature field

— Books on how to do it (formally proving implementations are correct)
— Existing libraries to use without being exposed to the complexities

Violate “circular wait”

* Probably the most usable / practical / flexible way to
prevent deadlocks

— (When lock-free data structures, that are getting popular, are
unavailable)

* Howiit’s done
— All resources are numbered in one sequence
* Ord(printer)=1, Ord(scanner)=2, Ord(lock_x)=3, Ord(lock _y)=4, ...
— Processes must request resources in increasing Ord() order

— Namely, a process holding some resources can only request additional
resources that have strictly higher numbers

— A process that wishes to acquire a resource that has a lower order
* Must first release all the resources it currently holds

Violate “circular wait”

Proof that it works
— Assume by contradiction that there exists a cycle
— Without loss of generality, further assume that
* P(i) waits for P((i+1) % n)
— Let M(i) be
 The maximal Ord() amongst the resources that P(i) holds
— Thus, since
e Each P(i) acquires resources in order, and
* P(i) waits for a resource held by P((i+1) % n)
— Then

 M(i) < M((i+1) % n)
=>M(0) < M(1) < M(2) < ... < M(n) < M(0)
=> M(0) < M(0)
=> contradiction

Violate “circular wait”

* We number the chopsticks 0...4 and lock in order

— if(i<4) //icanbeO..4
wait(fork[i])
wait(fork[i+1])
else // i==4
wait(fork[0]) //smaller
wait(fork[4]) // bigger
eat
signal(fork[i])
signal(fork[(i+1) % 5])

Deadlock detection

If there’s only one instance of each resource type

— Search for a cycle in the (simplified) resource allocation graph
* Found < deadlock

In the general case, which allows multiple instances per type
— Necessary conditions for deadlock != sufficient conditions for deadlock
— Indeed, a graph can have a cycle while the system is not deadlocked

— Example.....iiie, P1 P2 P3

Can nevertheless detect
deadlocks in general case

— But algorithm outside the ¢’ \:/

scope of this course R1

R2

26

Recovery from a deadlock

After a deadlock has been detected (previous slide)

— Need to somehow recover

If possible, this is done by terminating some of the processes
— Until deadlock is resolved
— Sometimes make sense, sometimes doesn’t

Or, if possible, by preempting resources

— Of deadlocked processes

Finding a minimal (“optimal”) set of processes to terminate
or resources to preempt is a hard problem

Deadlock avoidance

* Rules
— n processes
— k resource types (each type may have 1 or more instances)

— Upon initialization, each processes declares maximal number of
resource-instances it’ll need for each resource type

— While running, OS maintains how many resources are currently used
by each process

— And how many resource instances per type are currently free

* Upon process resource allocation request
— OS will allocate only iff allocation isn’t dangerous, namely
— It knows for a fact that it’ll be able to avoid deadlock in the future
— Otherwise, the process will be blocked until a better time

— Algorithm is thus said to be conservative, as there's a possibility for no
deadlock even if allocation is made, but OS doesn’t take the chance

e Upon process termination
— Process releases all its resources

Deadlock avoidance

« Example
— Banker’s algorithm (by Dijkstra)
— Uses the notation of “safe state”

» A state whereby we’re sure that all processes can be executed, in a
certain order, one after the other, such that each will obtain all the
resources it needs to complete its execution

— By ensuring such a sequence exists after each allocation
=> avoid deadlock
* Banker’s data structure
— max[p] =(m_1,m_2, ..., m_k) = max resource requirements for process p
— cur[p] =(c_1,c_2, ..., c_k) = current resource allocation for process p
— avail=(a_1,a_ 2,,a_k) = currently free resources
— R=(r_1,r 2, .., r_k)=the current resource request for process p

 Example
- maX[p] = (31011); Cur[p] = (31010)
— Note that max[p] >= cur[p] always holds // compare by coordinates

Banker’s algorithm

* Tentatively assume that request R was granted
— cur[p] +=R // vector addition
— avail-=R // vector subtraction

* Check if “safe state” (can satisfy all processes in some order)
— initialize P to hold all process
— while(P isn’t empty) {
found = false
foreachpin P{ //find one p that can be satisfied
if(max[p] — cur[p] <= avail) // worst case for p

124 4

avail += cur|[p] // “release” p’s resources

P-={p}
found = true

}
if(! found) return FAILURE

}
return SUCCESS

30

Banker’s algorithm — runtime complexity

* 0O(n"2)
— Even though number of possible orders is n!
— Because resources increase monotonically as processes terminate,
— Aslong as it’s possible to execute any set of processes
e Execution order not important
* (There is never any need to backtrack and try another order)

Banker’s algorithm — example

* Initial system state

(0,0,1) (1,01) (0,1,0) (3,000 (3,01) (2,1,1) (0,1,1) ° o R3

* P1requires instance of R1 [R =(1,0,0)]
— Granting the request yields

curl1] | curl2] | cur[3] |avail | max[1] | max{2] | maxi3]_

(1,0,1) (1,0,1) (0,1,0) (2,00) (3,0,1) (21,1) (0,1,1)

— Safe, because there are enough R1 instance so that P1’s max additional
request can be satisfied: max[1]-cur[1]=(2,0,0); so after P1’s termination

(1,0,1) (0,1,0) (3,0,1) (2,1,1) (0,1,1)

32

Banker’s algorithm — example

R1

e R2

7N

- “<~ o /o)
P1) P2) (P3
* Copied from previous slide \ N ~— >
-MWW-MM\\
(1,0,1) (0,1,0) (3,0,1) (2,1,1) (0,1,1) R3

* Not enough to satisfy P2 (why?), but can satisfy P3
— R3=(0,1,1) - (0,1,0) = (0,0,1) (<= avail = (3,0,1))

(1,0,1) (3,1,1) (2,1,1)

33

Ways to deal with deadlocks

1. Deadlock “prevention”
— Design system in which deadlock cannot happen
— Violate 1 of the 4

2. Deadlock “avoidance”

— System manages to stay away from deadlock situations by being
careful on a per resource-allocation decision basis

— Banker’s
3. Deadlock detection & recovery

— Allow system to enter deadlock state, but put in place mechanisms
that can detect, and recover from, this situation

THANKS

