
Operating Systems
BCA –IV th Sem

Deadlocks

By

Abhilasha Pandey

1

Text @ OS notes book

• Much of the material appears in Section 3.2 in Feitelson’s OS
notes book
– Literature section in course homepage

• In case this presentation and book conflicts
– As always, this presentation wins

2

Intro

• In the previous lecture
– We’ve talked about how to synchronize access to shared resources

• When synchronizing, if we’re not careful
– Our system might enter a deadlock state

• The popular formal CS definition of a dealock
– “A set of processes is deadlocked if each process in the set is waiting

for an event that only a process in the set can cause”

• Typically associated with synch-ing the use of resources
– Let’s revise the definition accordingly

– A set of processes is deadlocked if each process in the set is waiting for
a resource held by another process in the set

• “The dining philosophers problem”
– The canonical example in introductory OS lectures to demonstrate

deadlocks

3

• Five philosophers are sitting
around a large round table,
each with a bowl of Chinese food
in front of him

• Between periods of meditation,
they may start eating whenever
they want to, with their bowls
being filled frequently

• But there are only five chopsticks
available, one between every pair
of bowls -- and for eating Chinese
food, one needs two chopsticks...

• When a philosopher wants to
start eating, he must pick up the
chopstick to the left of his bowl
and the chopstick to the right of
his bowl

4

Dining philosophers – rules

Dining philosophers – naive solution

• Semaphore for each fork
– semaphore_t fork[5]

– (What it forks were place in the middle of the table and any
philosopher would be able to grab any fork? Would we still need 5
semaphores?)

• Naive (faulty) algorithm
– philosopher(i):

while(1) do…

• thinking for a while

• wait(fork[i])

• wait(fork[(i+1) % 5])

• eat

• signal(fork[(i+1) % 5])

• signal(fork[i])

5

• All the philosophers become
hungry at the exact same time

• They simultaneously pick up the
chopstick to their left

• They then all try to pick up the
chopstick to their right

• Only to find that those chopsticks
have already been picked up (by
the philosopher on their right)

• The philosophers then continue
to sit there indefinitely, each
holding onto one fork, glaring at
his neighbor angrily

• They are deadlocked

6

Dining philosophers – problem

• When considering resource
management
– Convenient to represent system

state with a directed graph

• 2 types of nodes
– Process = round node

– Resource type = square node

• Within resource, each
instance = a dot

• 2 types of edges
– Request = edge from process to

resource type

– Allocation = edge from resource
instance to a process

7

Resource allocation graph

P1 P2 P3

R1
R2

R3

P1 Holds instance of R2.
Waits for R1.

P2 Holds instances of R1 & R2.
Waits for R3.

P3 Holds instance of R3.

Resource allocation graph

• Examples of resources of which there’s a
– Single instance?

– Multiple instances?

• Assume we have n printers attached to a computer
– Do we need n instances of the same generic printer type?

– Or n separate printer types?

– Or something in between?

8

• Dining philosophers

9

Resource allocation graph

P1

P2

P3P4

P5

• When there’s only one
instance per resource type
– Can simplify graph

– By eliminating resources and
only marking dependencies
between processes

10

Resource allocation graph

P1 P2 P3

R1 R2 R3

• When there’s only one
instance per resource type
– Can simplify graph

– By eliminating resources and
only marking dependencies
between processes

11

Resource allocation graph

P1

P2

P3P4

P5

• When there’s only one
instance per resource type
– Can simplify graph

– By eliminating resources and
only marking dependencies
between processes

12

Resource allocation graph

P1

P2

P3P4

P5

Recall the formal definition of deadlock

• Definition
– A set of processes is deadlocked if each process in the set is waiting for

a resource held by another process in the set

• Why “in the set”?

– No deadlock, even though every
process in the set is waiting for a
resource held by another process:

– Indeed, if including P3, then since
P3 isn’t waiting for a resource held
by another process => no deadlock:

13

P1

P2
P3

P1

P2
P3

Recall the formal definition of deadlock

• Definition
– A set of processes is deadlocked if each process in the set is waiting for

a resource held by another process in the set

• Can the set be a subset?
– Of course

14

P1

P2
P3 P4 P5

Necessary conditions for deadlock

• All of these must hold in order for a deadlock to occur
1. Mutual exclusion

• Some resource is (i) used by more than one process, but is
(ii) exclusively allocated to one process at a time, not shared

• If used by only one process, or can be shared => can’t deadlock

2. Hold & wait

• Processes may hold one resource and wait for another

• If resources allocated atomically altogether => can’t deadlock

3. Circular wait

• P(i) waits for resource held by P((i+1) % n)

• Otherwise, recursively, there exists one process that need not wait

4. No resource preemption

• If resources held can be released (e.g., after some period of time),
then can break circular wait

15

DEALING WITH DEADLOCKS

16

Who’s responsible?

• Who is responsible for dealing with deadlocks?
– Typically you (the programmer)

– The OS doesn’t do it for you

– You need to know how to do it and implement it yourself

17

Can divide ways into 2

1. Design the system such that it is never allowed to enter into
a deadlock situation
– Usable

2. Allow the system to experience deadlock, but put in
mechanisms to detect & recover
– Less usable in practice

18

Violate 1 of the 4 conditions

• We’ve enumerated 4 conditions that must hold for deadlock
to occur
– So violating any one of them with eliminate the possibility of

deadlocking

19

Violate “hold and wait”

• Instead of acquiring resources one by one
– Each process requests all resources it’ll need at the outset

– System can then either provide all resources immediately

– Or block process until all requested resources are available

• Con
– Processes will hold on to their resources for more time than they

actually need them

– Limits concurrency and hence performance

• Refinement
– Before a process issues a new (atomic) request for resources

– It must release all resources it currently holds

• (And of course, before that, bring system to consistent state)

– Risking the resources will be allocated to other processes

20

Violate “no resource preemption”

• Under some circumstances, for some resources
– Can choose a victim process and release all its resources

– For example, if there isn’t enough memory, can write the victim’s state
to disk and release all its memory

21

Violate “mutual exclusion”

• It is possible to implement many canonical data structures
(such as a linked list)
– Without using any form of explicit synchronization

• No spinlocks, no semaphores, etc.

– But while still allowing multiple threads to concurrently use of the
data structure

• How?
– Using HW-supported atomic operations only (such as test-and-set)

– Such algorithms are (also) called “lock free”

• Not to be confused with the “lock free” algorithm definition from
a previous lecture (= “some thread always makes progress”)

• Mature field
– Books on how to do it (formally proving implementations are correct)

– Existing libraries to use without being exposed to the complexities

22

Violate “circular wait”

• Probably the most usable / practical / flexible way to
prevent deadlocks
– (When lock-free data structures, that are getting popular, are

unavailable)

• How it’s done
– All resources are numbered in one sequence

• Ord(printer)=1, Ord(scanner)=2, Ord(lock_x)=3, Ord(lock_y)=4, …

– Processes must request resources in increasing Ord() order

– Namely, a process holding some resources can only request additional
resources that have strictly higher numbers

– A process that wishes to acquire a resource that has a lower order

• Must first release all the resources it currently holds

23

Violate “circular wait”

• Proof that it works
– Assume by contradiction that there exists a cycle

– Without loss of generality, further assume that

• P(i) waits for P((i+1) % n)

– Let M(i) be

• The maximal Ord() amongst the resources that P(i) holds

– Thus, since

• Each P(i) acquires resources in order, and

• P(i) waits for a resource held by P((i+1) % n)

– Then

• M(i) < M((i+1) % n)
=> M(0) < M(1) < M(2) < … < M(n) < M(0)
=> M(0) < M(0)
=> contradiction

24

Violate “circular wait”

• We number the chopsticks 0…4 and lock in order

– if (i < 4) // i can be 0…4
wait(fork[i])
wait(fork[i+1])

else // i==4
wait(fork[0]) // smaller
wait(fork[4]) // bigger

eat
signal(fork[i])
signal(fork[(i+1) % 5])

25

Deadlock detection

• If there’s only one instance of each resource type
– Search for a cycle in the (simplified) resource allocation graph

• Found  deadlock

• In the general case, which allows multiple instances per type
– Necessary conditions for deadlock != sufficient conditions for deadlock

– Indeed, a graph can have a cycle while the system is not deadlocked

– Example……………………………………..

• Can nevertheless detect
deadlocks in general case
– But algorithm outside the

scope of this course

26

P1 P2 P3

R1
R2

Recovery from a deadlock

• After a deadlock has been detected (previous slide)
– Need to somehow recover

• If possible, this is done by terminating some of the processes
– Until deadlock is resolved

– Sometimes make sense, sometimes doesn’t

• Or, if possible, by preempting resources
– Of deadlocked processes

• Finding a minimal (“optimal”) set of processes to terminate
or resources to preempt is a hard problem

27

Deadlock avoidance

• Rules
– n processes

– k resource types (each type may have 1 or more instances)

– Upon initialization, each processes declares maximal number of
resource-instances it’ll need for each resource type

– While running, OS maintains how many resources are currently used
by each process

– And how many resource instances per type are currently free

• Upon process resource allocation request
– OS will allocate only iff allocation isn’t dangerous, namely

– It knows for a fact that it’ll be able to avoid deadlock in the future

– Otherwise, the process will be blocked until a better time

– Algorithm is thus said to be conservative, as there's a possibility for no
deadlock even if allocation is made, but OS doesn’t take the chance

• Upon process termination
– Process releases all its resources

28

Deadlock avoidance

• Example
– Banker’s algorithm (by Dijkstra)

– Uses the notation of “safe state”

• A state whereby we’re sure that all processes can be executed, in a
certain order, one after the other, such that each will obtain all the
resources it needs to complete its execution

– By ensuring such a sequence exists after each allocation
=> avoid deadlock

• Banker’s data structure
– max[p] = (m_1,m_2, …, m_k) = max resource requirements for process p

– cur[p] = (c_1,c_2, …, c_k) = current resource allocation for process p

– avail = (a_1, a_2, …., a_k) = currently free resources

– R = (r_1, r_2, …, r_k) = the current resource request for process p

• Example
– max[p] = (3,0,1), cur[p] = (3,0,0)

– Note that max[p] >= cur[p] always holds // compare by coordinates

29

Banker’s algorithm

• Tentatively assume that request R was granted
– cur[p] += R // vector addition

– avail -= R // vector subtraction

• Check if “safe state” (can satisfy all processes in some order)
– initialize P to hold all process

– while(P isn’t empty) ,
found = false
for each p in P { // find one p that can be satisfied

if(max[p] – cur[p] <= avail) // worst case for p
avail += cur[p] // “release” p’s resources
P -= {p}
found = true

}
if(! found) return FAILURE

}
return SUCCESS

30

Banker’s algorithm – runtime complexity

• O(n^2)
– Even though number of possible orders is n!

– Because resources increase monotonically as processes terminate,

– As long as it’s possible to execute any set of processes

• Execution order not important

• (There is never any need to backtrack and try another order)

31

Banker’s algorithm – example

cur[1] cur[2] cur[3] avail max[1] max[2] max[3]

(0,0,1) (1,0,1) (0,1,0) (3,0,0) (3,0,1) (2,1,1) (0,1,1)

32

• Initial system state

• P1 requires instance of R1 [R = (1,0,0)]
– Granting the request yields

– Safe, because there are enough R1 instance so that P1’s max additional
request can be satisfied: max[1]-cur*1+=(2,0,0); so after P1’s termination

cur[1] cur[2] cur[3] avail max[1] max[2] max[3]

(1,0,1) (1,0,1) (0,1,0) (2,0,0) (3,0,1) (2,1,1) (0,1,1)

cur[2] cur[3] avail max[2] max[3]

(1,0,1) (0,1,0) (3,0,1) (2,1,1) (0,1,1)

Banker’s algorithm – example

33

• Copied from previous slide

• Not enough to satisfy P2 (why?), but can satisfy P3
– R3 = (0,1,1) – (0,1,0) = (0,0,1) (<= avail = (3,0,1))

cur[2] cur[3] avail max[2] max[3]

(1,0,1) (0,1,0) (3,0,1) (2,1,1) (0,1,1)

cur[2] cur[3] avail max[2]

(1,0,1) (3,1,1) (2,1,1)

Ways to deal with deadlocks

1. Deadlock “prevention”
– Design system in which deadlock cannot happen

– Violate 1 of the 4

2. Deadlock “avoidance”
– System manages to stay away from deadlock situations by being

careful on a per resource-allocation decision basis

– Banker’s

3. Deadlock detection & recovery
– Allow system to enter deadlock state, but put in place mechanisms

that can detect, and recover from, this situation

34

THANKS

35

