
OBJECT ORIENTED PROGRAMMING

Object-oriented programming (OOP) refers to a type of computer

programming (software design) in which programmers define the data

type of a data structure, and also the types of operations (functions) that can

be applied to the data structure.

In this way, the data structure becomes an object that includes both data and

functions. In addition, programmers can create relationships between one

object and another. For example, objects can inherit characteristics from

other objects.



ADVANTAGES OF OBJECT ORIENTED PROGRAMMING

One of the principal advantages of object-oriented

programming techniques over procedural programming

techniques is that they enable programmers to

create modules that do not need to be changed when a new

type of object is added. A programmer can simply create a

new object that inherits many of its features from existing

objects. This makes object-oriented programs easier to modify.



THE BASIC OOP CONCEPTS

To better understand object-oriented programming languages, you will need to know a 
few basics before you can get started with code. The following definitions will help you 
better understand object-oriented programming:

Abstraction: The process of picking out (abstracting) common features of objects 
and procedures.

Class: A category of objects. The class defines all the common properties of the 
different objects that belong to it.

Encapsulation: The process of combining elements to create a new entity. A 
procedure is a type of encapsulation because it combines a series of computer 
instructions.



Information hiding: The process of hiding details of an object or function. Information 

hiding is a powerful programming technique because it reduces complexity.

Inheritance: a feature that represents the "is a" relationship between different classes.

Interface: the languages and codes that the applications use to communicate with each 

other and with the hardware.

Messaging: Message passing is a form of communication used in parallel programming 

and object-oriented programming.

Object: a self-contained entity that consists of both data and procedures to manipulate 

the data.

Polymorphism: A programming language's ability to process objects differently 

depending on their data type or class.

Procedure: a section of a program that performs a specific task.



FIELDS PROPERTIES
Fields and properties represent information that an object contains. Fields are like 

variables because they can be read or set directly.

Properties have get and set procedures, which provide more control on how values are 

set or returned.

Visual Basic allows you either to create a private field for storing the property value or 

use so-called auto-implemented properties that create this field automatically behind the 

scenes and provide the basic logic for the property procedures.

If you need to perform some additional operations for reading and writing the property 

value, define a field for storing the property value and provide the basic logic for storing 

and retrieving it:



Sample programe-

Class SampleClass

Private m_Sample As String

Public Property Sample() As String

Get

' Return the value stored in the field.

Return m_Sample

End Get

Set(ByVal Value As String)

' Store the value in the field.

m_Sample = Value

End Set

End Property

End Class



Most properties have methods or procedures to both set and get the property value.

However, you can create read-only or write-only properties to restrict them from being 
modified or read.

In Visual Basic you can use- ReadOnly and WriteOnly keywords

auto-implemented properties cannot be read-only or write-only.

Some feature for field properties are-

• Property Statement

• Get Statement

• Set Statement

• ReadOnly

• WriteOnly



METHODS

A method in object-oriented programming is a procedure associated with a class. A 

method defines the behavior of the objects that are created from the class. Another 

way to say this is that a method is an action that an object is able to perform. The 

association between method and class is called binding. Consider the example of an 

object of the type 'person,' created using the person class. Methods associated with 

this class could consist of things like walking and driving. Methods are sometimes 

confused with functions, but they are distinct.



A METHOD IS AN ACTION THAT AN OBJECT CAN PERFORM.

In Visual Basic, there are two ways to create a method: the sub statement is 

used if the method does not return a value; the function statement is used if 

a method returns a value.

To define a method of a class:

Class SampleClass

Public Function SampleFunc(ByVal SampleParam As String)

' Add code here

End Function

End Class

A class can have several implementations, or overloads, of the same method that differ in the number 

of parameters or parameter types.



Constructors
Constructors are class methods that are executed automatically when an object of a given type is 

created. Constructors usually initialize the data members of the new object. A constructor can run only 

once when a class is created. Furthermore, the code in the constructor always runs before any other 

code in a class. However, you can create multiple constructor overloads in the same way as for any 

other method.

To define a constructor for a class:

Class SampleClass

Sub New(ByVal s As String)

// Add code here.

End Sub

End Class



Destructors –

Destructors are used to destruct instances of classes. In the .NET Framework, the garbage collector 

automatically manages the allocation and release of memory for the managed objects in your 

application. However, you may still need destructors to clean up any unmanaged resources that your 

application creates. There can be only one destructor for a class.

Garbage Collection –

.NET's garbage collector manages the allocation and release of memory for your application. Each time 

you create a new object, the common language runtime allocates memory for the object from the 

managed heap. As long as address space is available in the managed heap, the runtime continues to 

allocate space for new objects. However, memory is not infinite. Eventually the garbage collector must 

perform a collection in order to free some memory. The garbage collector's optimizing engine determines 

the best time to perform a collection, based upon the allocations being made. When the garbage 

collector performs a collection, it checks for objects in the managed heap that are no longer being used 

by the application and performs the necessary operations to reclaim their memory.



Handling and raising events

Events in .NET are based on the delegate model. The delegate model follows the

Observer Design Pattern which enables a subscriber to register with and receive 

notifications from a provider. An event sender pushes a notification that an event has 

happened, and an event receiver receives that notification and defines a response to it. 

This article describes the major components of the delegate model, how to consume 

events in applications, and how to implement events in your code.

Events

Events enable a class or object to notify other classes or objects when something of 

interest occurs. The class that sends (or raises) the event is called the publisher and the 

classes that receive (or handle) the event are called subscribers.



Events

An event is a message sent by an object to signal the occurrence of an action. The action 

can be caused by user interaction, such as a button click, or it can result from some other 

program logic, such as changing a property’s value. The object that raises the event is 

called the event sender. The event sender doesn't know which object or method will 

receive (handle) the events it raises. The event is typically a member of the event sender; 

for example, the click event is a member of the button class, and the PropertyChanged

event is a member of the class that implements the INotifyPropertyChanged interface.

Thank you


