U.I.C.S.A.

P.G.D.C.A. 2ND SEMESTER

PRESENTATION ON DATA NORMALISATION

By – Mrs. Abhilasha Pandey

NORMALISATION

 Normalization is the process of organizing the data in the database.

•Normalization is used to minimize the redundancy from a relation or set of relations. It is also used to eliminate the undesirable characteristics like Insertion, Update and Deletion Anomalies.

•Normalization divides the larger table into the smaller table and links them using relationship.

•The normal form is used to reduce redundancy from the database table.

FIRST NORMAL FORM (1NF)

- A relation will be 1NF if it contains an atomic value.
- It states that an attribute of a table cannot hold multiple values. It must hold only single-valued attribute.
- First normal form disallows the multi-valued attribute, composite attribute, and their combinations.
- **Example:** Relation EMPLOYEE is not in 1NF because of multi-valued attribute EMP_PHONE

EMPLOYEE table:

EMP_ID	EMP_NAME	EMP_PHONE	EMP_STATE
14	John	7272826385, 9064738238	UP
20	Harry	8574783832	Bihar
12	Sam	7390372389, 8589830302	Punjab

The decomposition of the EMPLOYEE table into 1NF has been shown below:

EMP_ID	EMP_NAME	EMP_PHONE	EMP_STATE
14	John	7272826385	UP
14	John	9064738238	UP
20	Harry	8574783832	Bihar
12	Sam	7390372389	Punjab
12	Sam	8589830302	Punjab

SECOND NORMAL FORM (2NF)

- × In the 2NF, relational must be in 1NF.
- In the second normal form, all non-key attributes are fully functional dependent on the primary key
- **Example:** Let's assume, a school can store the data of teachers and the subjects they teach. In a school, a teacher can teach more than one subject.
- In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID which is a proper subset of a candidate key. That's why it violates the rule for 2NF.

TEACHER_ID	SUBJECT	TEACHER_AGE
25	Chemistry	30
25	Biology	30
47	English	35
83	Math	38
83	Computer	38

TEACHER table

To convert the given table into 2NF, we decompose it into two tables:

TEACHER_DETAIL table:

TEACHER_ID	TEACHER_AGE
25	30
47	35
83	38

TEACHER_SUBJECT table:

TEACHER_ID	SUBJECT
25	Chemistry
25	Biology
47	English
83	Math
83	Computer

THIRD NORMAL FORM (3NF)

- A relation will be in 3NF if it is in 2NF and not contain any transitive partial dependency.
- × 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.
- If there is no transitive dependency for non-prime attributes, then the relation must be in third normal form.
- * A relation is in third normal form if it holds at least one of the following conditions for every non-trivial function dependency $X \rightarrow Y$.
- × X is a super key.
- × Y is a prime attribute, i.e., each element of Y is part of some candidate key.

Example:

EMPLOYEE_DETAIL table:

EMP_ID	EMP_NAME	EMP_ZIP	EMP_STATE	EMP_CITY
222	Harry	201010	UP	Noida
333	Stephan	02228	US	Boston
444	Lan	60007	US	Chicago
555	Katharine	06389	UK	Norwich
666	John	462007	MP	Bhopal

- × Super key in the table above:
- * {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EM P_ZIP}....so on
- Candidate key: {EMP_ID}
- Non-prime attributes: In the given table, all attributes except EMP_ID are non-prime.
- Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent on EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively dependent on super key(EMP_ID). It violates the rule of third normal form.
- That's why we need to move the EMP_CITY and EMP_STATE to the new <EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key

EMPLOYEE table:

EMP_ID	EMP_NAME	EMP_ZIP
222	Harry	201010
333	Stephan	02228
444	Lan	60007
555	Katharine	06389
666	John	462007

EMPLOYEE_ZIP table:

EMP_ZIP	EMP_STATE	EMP_CITY
201010	UP	Noida
02228	US	Boston
60007	US	Chicago
06389	υκ	Norwich
462007	MP	Bhopal Go to Setting

FOURTH NORMAL FORM (4NF)

- A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued dependency.
- ★ For a dependency A → B, if for a single value of A, multiple values of B exists, then the relation will be a multi-valued dependency.

STUDENT

STU_ID	COURSE	HOBBY
21	Computer	Dancing
21	Math	Singing
34	Chemistry	Dancing
74	Biology	Cricket
59	Physics	Hockey

- The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent entity. Hence, there is no relationship between COURSE and HOBBY.
- In the STUDENT relation, a student with STU_ID, 21 contains two courses, Computer and Math and two hobbies, Dancing and Singing. So there is a Multivalued dependency on STU_ID, which leads to unnecessary repetition of data.

× So to make the above table into 4NF, we can decompose it into two tables:

STUDENT_COURSE		
STU_ID	COURSE	
21	Computer	
21	Math	
34	Chemistry	
74	Biology	
59	Physics	

STUDENT_HOBBY

STU_ID	HOBBY
21	Dancing
21	Singing
34	Dancing
74	Cricket
59	Hockey Activa Go to Se

Thank You

